

Overview of simulation-based results

Georg Lettner (TUW-EEG)

European Policy Workshop RES Aggregators as Enablers of Prosumers and Active Market Participation 11 February 2019 Council of European Energy Regulators (CEER), Brussels

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 691689.

Introduction

In total, 13 improved business models have been developed in the BestRES project.

(1) Automation and			
control	access to balancing markets	customers	DSM residential
(2) "Peer-to-peer" (local) energy matching	(6) Market renewables on multiple market	(10) Invest and market distributed generation of customers in	DSM commercial and industrial
	places	apartment houses	RES generation
(3) Dispatch flexible			flexible
generation under changing market design on multiple markets	(7) Trading PV and Wind power	marketing of end user's flexibility. (PT + ES)	RES generation volatile
(4) Suppling "mid- scale" customers with time variable tariffs including grid charges optimization	(8) Using flexibility of customers as third party	(13) Pooling flexibility for local balancing market and energy service provision.	Energy community
BestRES	12/02	/2019	2

For the simulation-based analysis the Femto-Toolbox (developed at TUW-EEG) has been used:

- Framework for techno-economic Mixed Integer Linear Programming (MILP) optimization models and simulation models for Aggregators
- Flexibly adaptable to different technology portfolios (energy producers, energy storage systems, flexible loads, e-mobility)
- Consider (multiple) different markets (day-ahead and intraday, balancing markets)

Uses innovative smart home technology to offer domestic customers insights of their energy usage and benefits through real time pricing.

- Shifting of individual load components: electric shower, fridge, kettle, microwave, toaster and washing machine
- Two tariff scenarios: Improved (TOU with two price levels) and Advanced (hourly RTP)

	Improved	Advanced
Cost for energy purchase for customer	-0.6 %	-1.2 %*
CO ₂	-0.12 %	-0.37 %

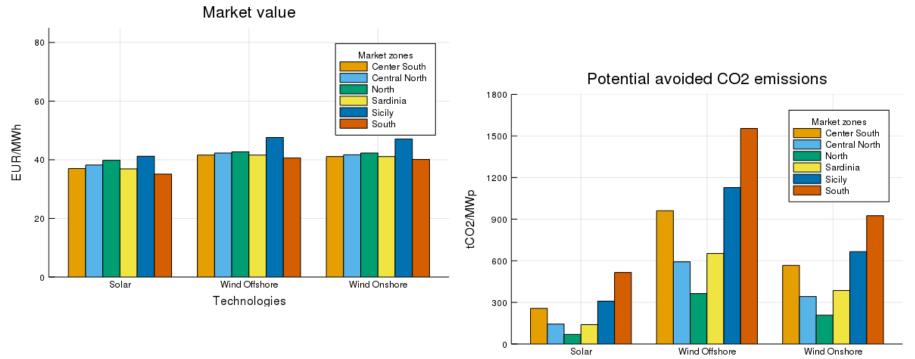
* (-17.6 % compared to TOU tariff)

Impact of the change from weekly to four-hourly reserve market products on the operation of flexible generation (biogas power plant).

- Two production cost assumptions: 100 / 140 EUR/MWh
- Auctioned market premium support mechanism
- Operation on day-ahead spot and aFRR markets

Cost assumptions	100 EUR/MWh	140 EUR/MWh
Annual Profit (4h vs weekly)	+18.7 %	+19.3 %
Offered +&- aFRR reserve (4h vs weekly)	+7.9 %	+8.8 %

Helps customers to benefit from market signals through time variable tariffs but also takes into account peakload-pricing of grid charges.


- Spot-only (baseline) vs Spot+Grid (improved) optimization
- Two tariff scenarios: Yearly and Monthly peak-loadpricing

	Yearly	Monthly
Annual Cost	-10.5 %	-20.7 %
Peak Load	-36.5 %	-36.5 %
CO ₂	+0.6 %	+0.8 %

Market renewables on multiple marketplaces- Next Kraftwerke (IT)

Analysis of the market value of RES for different technologies in new market areas:

Technologies

Trading PV and wind power from third party assets - Next Kraftwerke (BE)

Trade energy from renewables on short term markets and make use of portfolio effects. Use the intraday market to reduce imbalance cost.

- Three scenarios:
 - Baseline (no intraday market trades, only imbalance cost)
 - Improved (trade imbalances)
 - Optimal

Revenues	Technology	Improved	Optimal	
	Solar (BE)	-1.3 %	+4.8 %	
2015	Solar (NKW)	+1.8 %	+11.7 %	
2015	Wind Onshore	+1.2 %	+8 %	
	Wind Offshore	-2.9 %	+10 %	
	Solar (BE)	-1.1 %	+5.7 %	
2016	Solar (NKW)	-0.7 %	+12.4 %	
2016	Wind Onshore	-0.01 %	+8.1 %	
	Wind Offshore	+2.1 %	+10.2 %	

Using flexibility of customers as third party -Next Kraftwerke (BE)

Using the flexibility of customers can influence the imbalances and billing of their retailer. Bilateral contracts are required, to ensure non-opportunistic behaviour.

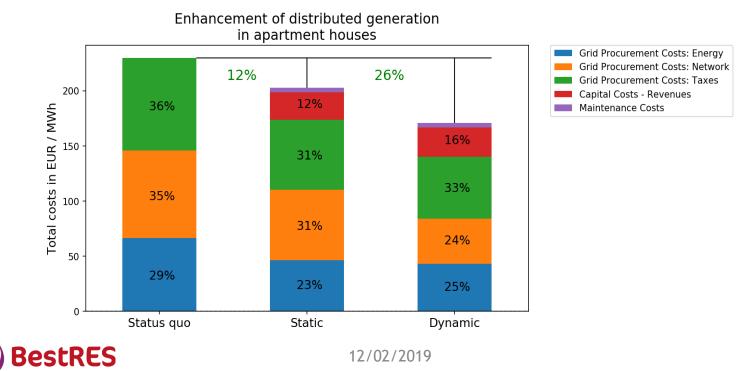
Baseline

Customer Cost [kEUR]	Supply
Lighting	-94,1
Cooling	-97,7
Industry	-60,4
Total	-252,2

Supplier Profit [kEUR]	Supply	Day Ahead	Total
Lighting	94,1	-94,1	0,0
Cooling	97,7	-97,7	0,0
Industry	60,4	-60,4	0,0
Total	252,2	-252,2	0,0

3rd party spot optimization

Customer / Aggregator Profit [kEUR]	Supply	Day Ahead	Supply Transfer	Total
Lighting	-90,2	4,0	-4,0	-90,2
Cooling	-94,8	2,9	-2,9	-94,8
Industry	-52,2	8,1	-8,1	-52,2
Total	-237,2	15,0	-15,0	-237,2


Supplier Profit [kEUR]	Supply	Day Ahead	Supply Transfer	Total
Lighting	90,2	-94,1	4,0	0,0
Cooling	94,8	-97,7	2,9	0,0
Industry	52,2	-60,4	8,1	0,0
Total	237,2	-252,2	15,0	0,0

Valorize distributed generation of customers in apartment houses - Oekostrom (AT)

Investing in and marketing distributed generation by customers in multi-apartment buildings.

Two scenarios:

- Static (Each resident owns a fixed share of the PV system)
- Dynamic (Trading of PV generation among residents is possible)

Activation and marketing of end user's flexibility - EDP (PT)

Use the flexibility of end users to reduce energy procurement cost on the day-ahead spot market or to reduce imbalanaces.

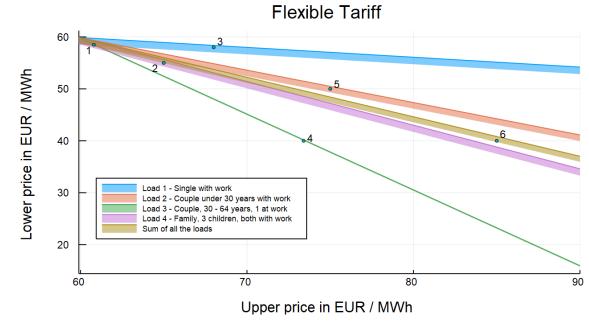
- 3 load types: Heat, Water, Other
- 3 scenarios: Spot, Imbalance and Optimal

Cost Reduction	Spot	Imbalance	Optimal
Spot market [EUR/MWh activated flexibility]	-7.7	0.0	-0.4
Imbalance cost [EUR/MWh activated flexibility]	0.0	-9.7	-22.6
Total [EUR/MWh activated flexibility]	-7.7	-9.7	-15.9

Change in CO2 emissions	Spot [%]	Imbalance [%]	Optimal [%]
Heat	+0.1	-0.0	0.0
Water	+4.8	-1.8	+0.9
Other	+1.8	+0.3	+0.9
Total	+1.0	-0.1	+0.4
BestRES	12/02/20)19	11

Summary and Conclusions

- Using demand side flexibility to react on price signals (flexible tariffs, expected imbalances, market prices) can create value and reduce cost for the customers.
- The profitability of DSM business models depends very much on the characteristics and availability of the flexibilities and the prices
- For flexible RES producers (like biogas power plants) balancing markets are more suitable than energy-only markets due to high short-run marginal costs.
- The feasibility of business models with volatile RES production depends on the opportunity cost: Market value vs end user bill.
- No clear recommendation between intraday and imbalance market could be identified for forecast errors of volatile RES.
- 3rd party activation of flexibility can contribute to agent engagement and total system felxibility but requires bilateral contracts or a suitable legal framework.


Thank you!

Georg Lettner (TUW-EEG) lettner@eeg.tuwien.ac.at

Demand side flexibilisation of small customers - Oekostrom (AT)

Design a tariff with two price levels to incentivize demand side flexibilization.

Find win-win situations between the retailer and different customer groups.

Activation and marketing of end user's flexibility - EDP (ES)

- 3 load types: HVAC, Water, Other
- 3 scenarios: Spot, Imbalance and Optimal

Cost Reduction	Spot	Imbalance	Optimal
Spot market [EUR/MWh activated flexibility]	-9.7	0.0	-9.7
Imbalance cost [EUR/MWh activated flexibility]	0.0	-1.1	-5.5
Total [EUR/MWh activated flexibility]	-9.7	-1.1	-9.7

Change in CO2 emissions	Spot [%]	Imbalance [%]	Optimal [%]
HVAC	0.1	-0.1	-0.0
Power	-1.0	-0.2	-1.2
Lighting	-0.1	-0.0	-0.1
Total	-0.7	-0.1	-0.8

